Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Physiol Rep ; 12(8): e16015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653581

RESUMO

Adaptation of humans to challenging environmental conditions, such as extreme temperature, malnutrition, or hypoxia, is an interesting phenomenon for both basic and applied research. Identification of the genetic factors contributing to human adaptation to these conditions enhances our understanding of the underlying molecular and physiological mechanisms. In our study, we analyzed the exomes of 22 high altitude mountaineers to uncover genetic variants contributing to hypoxic adaptation. To our surprise, we identified two putative loss-of-function variants, rs1385101139 in RTEL1 and rs1002726737 in COL6A1 in two extremely high altitude (personal record of more than 8500 m) professional climbers. Both variants can be interpreted as pathogenic according to medical geneticists' guidelines, and are linked to inherited conditions involving respiratory failure (late-onset pulmonary fibrosis and severe Ullrich muscular dystrophy for rs1385101139 and rs1002726737, respectively). Our results suggest that a loss of gene function may act as an important factor of human adaptation, which is corroborated by previous reports in other human subjects.


Assuntos
Altitude , Colágeno Tipo VI , Insuficiência Respiratória , Humanos , Colágeno Tipo VI/genética , Masculino , Insuficiência Respiratória/genética , Adulto , Montanhismo , Feminino , Sequenciamento do Exoma/métodos , Pessoa de Meia-Idade , Doença da Altitude/genética
2.
Cells ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474342

RESUMO

The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.


Assuntos
Colágeno Tipo VI , Mecanotransdução Celular , Distrofias Musculares , Esclerose , Humanos , Colágeno Tipo VI/genética , Proteínas Hedgehog/metabolismo , Tendões/metabolismo , Fibroblastos/metabolismo
3.
Cancer Res ; 84(7): 977-993, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335278

RESUMO

Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature. Upon reaching the apical surface of lung endothelial cells, modified COLVI from tumor cells activated integrin ß1 (ITGß1). Furthermore, activated ITGß1 colocalized with Kindlin2, initiating their interaction with F-actin and prompting its polymerization. Polymerized F-actin disrupted endothelial adherens junctions and induced barrier dysfunction. Consistently, modified and secreted COLVI was required for the late stages of lung metastasis in vivo. Analysis of patient gene expression and survival data from The Cancer Genome Atlas (TCGA) revealed an association between the expression of both PLOD2 and COLVI and patient survival. Furthermore, high levels of COLVI were detected in surgically resected sarcoma metastases from patient lungs and in the blood of tumor-bearing mice. Together, these data identify a mechanism of sarcoma lung metastasis, revealing opportunities for therapeutic intervention. SIGNIFICANCE: Collagen type VI modified by hypoxia-induced PLOD2 is secreted by sarcoma cells and binds to integrin ß1 on endothelial cells to induce barrier dysfunction, which promotes sarcoma vascular dissemination and metastasis.


Assuntos
Neoplasias Pulmonares , Sarcoma , Humanos , Animais , Camundongos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Células Endoteliais/metabolismo , Peixe-Zebra/metabolismo , Actinas , Integrina beta1 , Hipóxia , Sarcoma/metabolismo , Pulmão/patologia
4.
Mol Biol Rep ; 51(1): 206, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270688

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) have been widely recognized as a highly promising option for cell-based tissue engineering therapy targeting osteoporosis. However, the osteogenic differentiation of BMSCs is impeded by the limited viability and diminished capacity for bone formation within the osteoporotic microenvironment. METHODS: In this study, the COL6A3 gene was confirmed through an extensive analysis of the preceding single-cell sequencing database. The generation of an inflammatory microenvironment resembling osteoporotic cell transplantation was achieved by employing lipopolysaccharide (LPS). A lentivirus targeting the COL6A3 gene was constructed, and a Western blotting assay was used to measure the marker proteins of osteogenesis, adipogenesis, and mitophagy. Immunofluorescence was utilized to observe the colocalization of mitochondria and lysosomes. The apoptosis rate of each group was evaluated using the TUNEL assay, and the mitochondrial membrane potential was assessed using JC-1 staining. RESULTS: This investigation discovered that the impaired differentiation capacity and decreased viability of BMSCs within the inflammatory microenvironment were markedly ameliorated upon overexpression of the specific COL6A3 gene. Moreover, the administration of COL6A3 gene overexpression successfully mitigated the inhibitory impacts of LPS on mitophagy and the expression of inflammatory mediators, specifically inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BMSCs. To clarify the underlying mechanism, the role of mitophagy during the differentiation of COL6A3 gene-modified BMSCs in the inflammatory microenvironment was evaluated using the mitophagy inhibitor Mdivi-1. CONCLUSIONS: In the context of lipopolysaccharide (LPS) stimulation, COL6A3 enhances the differentiation of BMSCs into osteogenic and adipogenic lineages through the promotion of mitophagy and the maintenance of mitochondrial health. Our findings may provide a novel therapeutic approach utilizing stem cells in the treatment of osteoporosis.


Assuntos
Colágeno Tipo VI , Células-Tronco Mesenquimais , Osteoporose , Lipopolissacarídeos/farmacologia , Mitofagia/genética , Osteogênese/genética
5.
Arthritis Res Ther ; 26(1): 3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167226

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation in multiple articular joints, causing pain, joint damage, and loss of joint function. Despite the successful development of disease-modifying therapies, the heterogeneity of RA means that a significant proportion of patients respond poorly to treatment. This highlights the need for personalized medicine and predictive biomarkers to optimize treatment efficacy, safety, and cost. This study aimed to explore the relationship between type VI collagen (Col VI) remodeling and clinical response to anti-IL-6 receptor treatment. METHODS: Type VI collagen degradation was quantified using the C6M biomarker, a fragment of type VI collagen degraded by MMPs. Longitudinal differences in average biomarker levels between placebo and treatment groups were estimated using linear mixed models. The predictive capacity of the marker based on change from baseline to 4 weeks was analyzed using logistic regression. RESULTS: Both 4 mg and 8 mg doses of Tocilizumab (TCZ) reduced serum C6M concentrations compared to the placebo. Furthermore, C6M levels were more reduced in patients responding to treatment compared to early non-responders. A lower early reduction in C6M was associated with reduced odds of ACR treatment response and lowered disease activity. CONCLUSION: These findings suggest that quantifying type VI collagen turnover may aid in identifying patients less likely to respond to treatment, indicating a new path towards optimizing patient care. Further studies are needed to validate these findings and explore the underlying mechanisms driving the observed relationships.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Colágeno Tipo VI , Artrite Reumatoide/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Resultado do Tratamento , Biomarcadores , Antirreumáticos/uso terapêutico
7.
Medicine (Baltimore) ; 102(49): e36398, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065855

RESUMO

RATIONALE: Mutations in the gene encoding type VI collagen cause Bethlem myopathy (MIM 158810) and Ullrich congenital muscular dystrophy (MIM 254090); 2 diseases previously recognized as completely independent, and have been increasingly recognized. However, collagen-related myopathy caused by intron variation in the COL6 gene is rarely reported in China. Ullrich congenital muscular dystrophy is an autosomal recessive disorder that leads to severe muscle weakness with early onset. Thus, children may never walk independently, with proximal joint contractures and significant hyperelastic distal joints, and have early respiratory failure. Therefore, timely diagnosis and treatment are important. We report a spontaneous mutation in the COL6A2 gene causing Ullrich congenital muscular dystrophy type 1 in a pediatric patient. PATIENT CONCERNS: A boy aged 4 years was unable to walk independently, could sit alone for a short time, and his motor development was delayed and had regressed after 1 year of age. He had a high palatal arch and a through palm with localized transverse lines running laterally from the palm. Electromyography showed an impaired neurogenic source, and whole-exon gene sequencing revealed a spontaneous heterozygous mutation in the COL6A2 gene (c.955-2A>G), which was determined to be a pathogenic mutation according to the American Guidelines of the College of Medical Genetics. DIAGNOSES: This child has a delayed motor development, high osprey arch and a through palm with localized transverse lines running laterally from the palm, and regression of motor development after the age of 1 year. Whole exon examination showed spontaneous mutation of the COL6A2 gene; thus, the child was diagnosed with UCMD type 1. INTERVENTIONS: At present, there is no special treatment for this disease, and treatment is mainly symptomatic and supportive. The child underwent home massage, rehabilitation training, oral folic acid tablets, vitamins and coenzyme Q10. OUTCOMES: During the subsequent follow-up period, the patient can now sit alone for a short period of time. LESSONS: We report a case of spontaneous mutation in the COL6A2 gene causing Ullrich congenital muscular dystrophy type 1 in a pediatric patient, expanding the phenotypic spectrum of the disease and enriching the human gene pool.


Assuntos
Contratura , Doenças Musculares , Distrofias Musculares , Masculino , Humanos , Criança , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Doenças Musculares/genética , Mutação , Colágeno Tipo VI/genética
8.
Cell Rep ; 42(11): 113371, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37938972

RESUMO

Senescent cells are a major contributor to age-dependent cardiovascular tissue dysfunction, but knowledge of their in vivo cell markers and tissue context is lacking. To reveal tissue-relevant senescence biology, we integrate the transcriptomes of 10 experimental senescence cell models with a 224 multi-tissue gene co-expression network based on RNA-seq data of seven tissues biopsies from ∼600 coronary artery disease (CAD) patients. We identify 56 senescence-associated modules, many enriched in CAD GWAS genes and correlated with cardiometabolic traits-which supports universality of senescence gene programs across tissues and in CAD. Cross-tissue network analyses reveal 86 candidate senescence-associated secretory phenotype (SASP) factors, including COL6A3. Experimental knockdown of COL6A3 induces transcriptional changes that overlap the majority of the experimental senescence models, with cell-cycle arrest linked to modulation of DREAM complex-targeted genes. We provide a transcriptomic resource for cellular senescence and identify candidate biomarkers, SASP factors, and potential drivers of senescence in human tissues.


Assuntos
Senescência Celular , Transcriptoma , Humanos , Transcriptoma/genética , Senescência Celular/genética , Fenótipo , Biomarcadores , Colágeno , Colágeno Tipo VI/genética
9.
Immunol Lett ; 263: 1-13, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704178

RESUMO

BACKGROUND: Synovial fibroblasts are critical for maintaining homeostasis in major autoimmune diseases involving joint inflammation, including osteoarthritis and rheumatoid arthritis. However, little is known about the interactions among different cell subtypes and the specific sets of signaling pathways and activities that they trigger. METHODS: Using social network analysis, pattern recognition, and manifold learning approaches, we identified patterns of single-cell communication in OA (osteoarthritis) and RA (rheumatoid arthritis). RESULTS: Our results suggest that OA and RA have distinct cellular communication patterns and signaling pathways. The LAMININ (Laminin) and COLLAGEN (Collagen) pathways predominate in osteoarthritis, while the EGF (Epidermal growth factor), NT (Neurotrophin) and CDH5 (Cadherin 5) pathways predominate in rheumatoid arthritis, with a central role for THY1 (Thy-1 cell surface antigen) +CDH11 (Cadherin 11) + cells. The OA opens the PDGF (Platelet-derived growth factors) pathway (driver of bone angiogenesis), the RA opens the EGF pathway (bone formation) and the SEMA3 (Semaphorin 3A) pathway (involved in immune regulation). Interestingly, we found that OA no longer has cell types involved in the MHC complex (Major histocompatibility complex) and their activity, whereas the MHC complex functions primarily in RA in the presentation of inflammatory antigens, and that the complement system in OA has the potential to displace the function of the MHC complex. The specific signaling patterns of THY1+CDH11+ cells and their secreted ligand receptors are more conducive to cell migration and lay the foundation for promoting osteoclastogenesis. This subpopulation may also be involved in the accumulation of lymphocytes, affecting the recruitment of immune cells. Members of the collagen family (COL1A1 (Collagen Type I Alpha 1 Chain), COL6A2 (Collagen Type VI Alpha 2 Chain) and COL6A1 (Collagen Type VI Alpha 1 Chain)) and transforming growth factor (TGFB3) maintain the extracellular matrix in osteoarthritis and mediate cell migration and adhesion in rheumatoid arthritis, including the PTN (Pleiotrophin) / THBS1 (Thrombospondin 1) interaction. CONCLUSION: Increased understanding of the interaction networks between synovial fibroblast subtypes, particularly the shared and unique cellular communication features between osteoarthritis and rheumatoid arthritis and their hub cells, should help inform the design of therapeutic agents for inflammatory joint disease.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Membrana Sinovial , Fator de Crescimento Epidérmico/metabolismo , Laminina/metabolismo , Colágeno Tipo VI/metabolismo , Comunicação Celular , Fibroblastos , Comunicação
10.
Autophagy ; 19(12): 3221-3229, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37528588

RESUMO

COL6 (collagen type VI)-related myopathies (COL6-RM) are a distinct group of inherited muscle disorders caused by mutations of COL6 genes and characterized by early-onset muscle weakness, for which no cure is available yet. Key pathophysiological features of COL6-deficient muscles involve impaired macroautophagy/autophagy, mitochondrial dysfunction, neuromuscular junction fragmentation and myofiber apoptosis. Targeting autophagy by dietary means elicited beneficial effects in both col6a1 null (col6a1-/-) mice and COL6-RM patients. We previously demonstrated that one-month per os administration of the nutraceutical spermidine reactivates autophagy and ameliorates myofiber defects in col6a1-/- mice but does not elicit functional improvement. Here we show that a 100-day-long spermidine regimen is able to rescue muscle strength in col6a1-/- mice, with also a beneficial impact on mitochondria and neuromuscular junction integrity, without any noticeable side effects. Altogether, these data provide a rationale for the application of spermidine in prospective clinical trials for COL6-RM.Abbreviations: AChR: acetylcholine receptor; BTX: bungarotoxin; CNF: centrally nucleated fibers; Colch: colchicine; COL6: collagen type VI; COL6-RM: COL6-related myopathies; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NMJ: neuromuscular junction; Spd: spermidine; SQSTM1/p62: sequestosome 1; TA: tibialis anterior; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.


Assuntos
Doenças Musculares , Espermidina , Humanos , Camundongos , Animais , Espermidina/farmacologia , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Estudos Prospectivos , Autofagia/fisiologia , Doenças Musculares/metabolismo , Músculo Esquelético/metabolismo
11.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569848

RESUMO

Pathogenetic mechanism recognition and proof-of-concept clinical trials were performed in our patients affected by collagen VI-related myopathies. This study, which included 69 patients, aimed to identify innovative clinical data to better design future trials. Among the patients, 33 had Bethlem myopathy (BM), 24 had Ullrich congenital muscular dystrophy (UCMD), 7 had an intermediate phenotype (INTM), and five had myosclerosis myopathy (MM). We obtained data on muscle strength, the degree of contracture, immunofluorescence, and genetics. In our BM group, only one third had a knee extension strength greater than 50% of the predicted value, while only one in ten showed similar retention of elbow flexion. These findings should be considered when recruiting BM patients for future trials. All the MM patients had axial and limb contractures that limited both the flexion and extension ranges of motion, and a limitation in mouth opening. The immunofluorescence analysis of collagen VI in 55 biopsies from 37 patients confirmed the correlation between collagen VI defects and the severity of the clinical phenotype. However, biopsies from the same patient or from patients with the same mutation taken at different times showed a progressive increase in protein expression with age. The new finding of the time-dependent modulation of collagen VI expression should be considered in genetic correction trials.


Assuntos
Contratura , Distrofias Musculares , Miopatias Congênitas Estruturais , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distrofias Musculares/metabolismo , Contratura/genética , Contratura/patologia , Mutação
12.
Toxins (Basel) ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37505710

RESUMO

Consumption coagulopathy and hemorrhagic syndrome exacerbated by blood anticoagulability remain the most important causes of lethality associated with Bothrops snake envenomation. Bothrops venom also engages platelet aggregation on the injured endothelium via von Willebrand factor (vWF) interactions. Besides platelet aggregation, some Bothrops venom toxins may induce qualitative thrombopathy, which has been in part related to the inhibition of vWF activation. We tested whether B. lanceolatus venom impaired vWF to collagen(s) binding (vWF:CB) activity. Experiments were performed with B. lanceolatus crude venom, in the presence or absence of Bothrofav, a monospecific B. lanceolatus antivenom. Venom of B. lanceolatus fully inhibited vWF to collagen type I and III binding, suggesting venom interactions with the vWF A3 domain. In contrast, B. lanceolatus venom increased vWF to collagen type VI binding, suggesting the enhancement of vWF binding to collagen at the vWF A1 domain. Hence, B. lanceolatus venom exhibited contrasting in vitro effects in terms of the adhesive properties of vWF to collagen. On the other hand, the antivenom Bothrofav reversed the inhibitory effects of B. lanceolatus venom on vWF collagen binding activity. In light of the respective distribution of collagen type III and collagen type VI in perivascular connective tissue and the sub-endothelium, a putative association between an increase in vWF:CB activity for collagen type VI and the onset of thrombotic events in human B. lanceolatus envenomation might be considered.


Assuntos
Bothrops , Venenos de Crotalídeos , Trombose , Animais , Humanos , Antivenenos/farmacologia , Fator de von Willebrand/metabolismo , Bothrops/metabolismo , Colágeno Tipo VI/metabolismo , Venenos de Crotalídeos/química
13.
J Pathol ; 260(4): 417-430, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272555

RESUMO

Despite a number of studies providing evidence that the extracellular matrix (ECM) is an active player in the pathogenesis of intestinal inflammation, knowledge on the actual contribution of specific ECM molecules in the progression of inflammatory bowel disease (IBD) remains scant. Here, we investigated the role of a major ECM protein, collagen VI (ColVI), in gut homeostasis and elucidated the impact of its deregulation on the pathophysiology of IBD. To this end, we combined in vivo and ex vivo studies on wild type and ColVI-deficient (Col6a1-/- ) mice both under physiological conditions and during experimentally induced acute colitis and its subsequent recovery, by means of gut histology and immunostaining, gene expression, bone marrow transplantation, flow cytometry of immune cell subpopulations, and lymph flow assessment. We found that ColVI displayed dynamic expression and ECM deposition during the acute inflammatory and recovery phases of experimentally induced colitis, whereas the genetic ablation of ColVI in Col6a1 null mice impaired the functionality of lymphatic vessels, which in turn affected the resolution of inflammation during colitis. Based on these findings, we investigated ColVI expression and deposition in ileal specimens from two cohorts of patients affected by Crohn's disease (CD) and correlated ColVI abundance to clinical outcome. Our results show that high ColVI immunoreactivity in ileal biopsies of CD patients at diagnosis correlates with increased risk of surgery and that ColVI expression in biopsies taken at the resection margin during surgery, and showing inactive disease, predict disease recurrence. Our data unveil a key role for ColVI in the intestinal microenvironment, where it is involved in lymphangiogenesis and intestinal inflammation. Altogether, these findings point at the dysregulation of ColVI expression as a novel factor contributing to the onset and maintenance of inflammation in CD via mechanisms impinging on the modulation of inflammatory cell recruitment and function. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Animais , Camundongos , Linfangiogênese , Colágeno Tipo VI/genética , Colite/induzido quimicamente , Colite/genética , Camundongos Knockout , Inflamação , Drenagem
14.
Neuromuscul Disord ; 33(7): 539-545, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315421

RESUMO

The three major collagen VI genes: COL6A1, COL6A2, and COL6A3 encode microfibrillar components of extracellular matrices in multiple tissues including muscles and tendons. Pathogenic variants in the collagen VI genes cause collagen VI-related dystrophies representing a continuum of conditions from Bethlem myopathy at the milder end to Ullrich congenital muscular dystrophy at the more severe end. Here we describe a pathogenic variant in the COL6A1 gene (NM_001848.3; c.1741-6G>A) found in homozygosity in three patients with Ullrich congenital muscular dystrophy. The patients suffered from severe muscle impairment characterised by proximal weakness, distal hyperlaxity, joint contractures, wheelchair-dependency, and use of nocturnal non-invasive ventilation. The pathogenicity was verified by RNA analyses showing that the variant induced aberrant splicing leading to a frameshift and loss of function. The analyses were in line with immunocytochemistry studies of patient-derived skin fibroblasts and muscle tissue demonstrating impaired secretion of collagen VI into the extracellular matrix. Thereby, we add the variant c.1741-6G>A to the list of pathogenic, recessive, splice variants in COL6A1 causing Ullrich congenital muscular dystrophy. The variant is listed in ClinVar as of "uncertain significance" and "likely benign" and may presumably have been overlooked in other patients.


Assuntos
Colágeno Tipo VI , Contratura , Distrofias Musculares , Humanos , Colágeno Tipo VI/genética , Contratura/genética , Contratura/patologia , Músculos/patologia , Distrofias Musculares/genética , Mutação
15.
Metabolism ; 145: 155629, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302692

RESUMO

BACKGROUND AND AIMS: Extracellular matrix (ECM) homeostasis plays a crucial role in metabolic plasticity and endocrine function of adipose tissue. High levels of intracellular endotrophin, a cleavage peptide of type VI collagen alpha 3 chain (Col6a3), have been frequently observed in adipocyte in obesity and diabetes. However, how endotrophin intracellularly traffics and influences metabolic homeostasis in adipocyte remains unknown. Therefore, we aimed to investigate the trafficking of endotrophin and its metabolic effects in adipocytes depending on lean or obese condition. METHODS: We used doxycycline-inducible adipocyte-specific endotrophin overexpressed mice for a gain-of-function study and CRISPR-Cas9 system-based Col6a3-deficient mice for a loss-of-function study. Various molecular and biochemical techniques were employed to examine the effects of endotrophin on metabolic parameters. RESULTS: In adipocytes during obesity, the majority of endosomal endotrophin escapes lysosomal degradation and is released into the cytosol to mediate direct interactions between SEC13, a major component of coat protein complex II (COPII) vesicles, and autophagy-related 7 (ATG7), leading to the increased formation of autophagosomes. Autophagosome accumulation disrupts the balance of autophagic flux, resulting in adipocyte death, inflammation, and insulin resistance. These adverse metabolic effects were ameliorated by either suppressing ATG7 with siRNA ex vivo or neutralizing endotrophin with monoclonal antibodies in vivo. CONCLUSIONS: High levels of intracellular endotrophin-mediated autophagic flux impairment in adipocyte contribute to metabolic dysfunction such as apoptosis, inflammation, and insulin resistance in obesity.


Assuntos
Colágeno Tipo VI , Resistência à Insulina , Camundongos , Animais , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Resistência à Insulina/genética , Autofagossomos/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Autofagia , Inflamação/metabolismo
16.
Res Vet Sci ; 159: 171-182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148736

RESUMO

This study aimed to investigate the expression of type VI collagen α3 chain (COL6a3) in neoplastic cells of canine mammary gland carcinomas (CMGCs) using immunohistochemistry (IHC) and to evaluate the association between COL6a3 expression and tumor histological features, histological grades, and the differentiation status of neoplastic epithelial cells. COL6a3 expression in carcinoma cells was significantly associated with histologically low malignancy and low mitotic indices. In addition, COL6a3+ carcinoma cells were more frequently detected in simple carcinomas (tubular and tubulopapillary types) than in solid carcinomas. These findings indicate that reduced expression of COL6a3 in carcinoma cells contributes to the malignant phenotype in CMGCs. We also showed that COL6a3 expression in the carcinoma cells was more frequently detected in CK19+/CD49f + and/or CK19+/CK5+ tumors. In addition, COL6a3+/CK19+/CD49f + and COL6a3+/CK19+/CK5+ tumors consisted of CK19+/CD49f + and CK19+/CD49f- cells, and CK19+/CK5+ and CK19+/CK5- cells, respectively. Most of these tumors more frequently expressed GATA3, but not Notch1. These results indicate that COL6a3 is expressed in CMGCs containing both luminal progenitor-like and mature luminal-like cells and showing differentiation ability into mature luminal cells. It is possible that COL6 may be involved in the differentiation of luminal progenitor-like carcinoma cells into mature luminal-like carcinoma cells in CMGCs, which may suppresses the development of malignant phenotypes in CMGCs.


Assuntos
Carcinoma , Doenças do Cão , Animais , Cães , Colágeno Tipo VI/genética , Integrina alfa6/genética , Carcinoma/patologia , Carcinoma/veterinária , Diferenciação Celular , Fenótipo , Doenças do Cão/metabolismo
17.
Biomolecules ; 13(5)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37238662

RESUMO

Early prediction of kidney graft function may assist clinical management, and for this, reliable non-invasive biomarkers are needed. We evaluated endotrophin (ETP), a novel non-invasive biomarker of collagen type VI formation, as a prognostic marker in kidney transplant recipients. ETP levels were measured with the PRO-C6 ELISA in the plasma (P-ETP) of 218 and urine (U-ETP/Cr) of 172 kidney transplant recipients, one (D1) and five (D5) days, as well as three (M3) and twelve (M12) months, after transplantation. P-ETP and U-ETP/Cr at D1 (P-ETP AUC = 0.86, p < 0.0001; U-ETP/Cr AUC = 0.70, p = 0.0002) were independent markers of delayed graft function (DGF) and P-ETP at D1 had an odds ratio of 6.3 (p < 0.0001) for DGF when adjusted for plasma creatinine. The results for P-ETP at D1 were confirmed in a validation cohort of 146 transplant recipients (AUC = 0.92, p < 0.0001). U-ETP/Cr at M3 was negatively associated with kidney graft function at M12 (p = 0.007). This study suggests that ETP at D1 can identify patients at risk of delayed graft function and that U-ETP/Cr at M3 can predict the future status of the allograft. Thus, measuring collagen type VI formation could aid in predicting graft function in kidney transplant recipients.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Colágeno Tipo VI , Função Retardada do Enxerto/etiologia , Transplantados , Aloenxertos , Fatores de Risco
18.
Neuromuscul Disord ; 33(5): 371-381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023487

RESUMO

Collagen VI-related myopathies are a group of disorders that cause muscle weakness and joint contractures with significant variability in disease severity among patients. Here we report the clinical and genetic characteristics of 13 Chinese patients. Detailed histological, radiological and muscle transcriptomic evaluations were also conducted for selected representative patients. Across the cohort, fifteen putative disease causal variants were identified in three genes encoding collagen VI subunits, COL6A1 (n=6), COL6A2 (n=5), and COL6A3 (n=4). Most of these variants (12/15, 80%) were dominant negative and occurred at the triple helical domain. The rest (3/15, 20%) were located at the C-terminus. Two previously unreported variants, an in-frame mutation (COL6A1:c.1084_1092del) and a missense mutation (COL6A2:c.811G>C), were also noted. The transcriptome data from the muscle biopsies of two patients in the study with dominant negative mutations [COL6A2:c.811G>C and COL6A1:c.930+189C>T] supports the accepted aetiology of Collagen VI myopathy as dysfunction of the extracellular matrix. It also suggests there are perturbations to skeletal muscle differentiation and skeletal system development. It should be noted that although the phenotypes of patients can be mostly explained by the position and dominant-negative effect of the variants, exceptions and variability still exist and have to be reckoned with. This study provides valuable data explaining the varying severity of phenotypes among ethnically Chinese patients.


Assuntos
Doenças Musculares , Distrofias Musculares , Humanos , Transcriptoma , Colágeno Tipo VI/genética , Doenças Musculares/genética , Fenótipo , Genótipo , Mutação
19.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982625

RESUMO

Collagen VI is a heterotrimeric protein expressed in several tissues and involved in the maintenance of cell integrity. It localizes at the cell surface, creating a microfilamentous network that links the cytoskeleton to the extracellular matrix. The heterotrimer consists of three chains encoded by COL6A1, COL6A2 and COL6A3 genes. Recessive and dominant molecular defects cause two main disorders, the severe Ullrich congenital muscular dystrophy and the relatively mild and slowly progressive Bethlem myopathy. We analyzed the clinical aspects, pathological features and mutational spectrum of 15 COL6-mutated patients belonging to our cohort of muscular dystrophy probands. Patients presented a heterogeneous phenotype ranging from severe forms to mild adult-onset presentations. Molecular analysis by NGS detected 14 different pathogenic variants, three of them so far unreported. Two changes, localized in the triple-helical domain of COL6A1, were associated with a more severe phenotype. Histological, immunological and ultrastructural techniques were employed for the validation of the genetic variants; they documented the high variability in COL6 distribution and the extracellular matrix disorganization, highlighting the clinical heterogeneity of our cohort. The combined use of these different technologies is pivotal in the diagnosis of COL6 patients.


Assuntos
Doenças Musculares , Distrofias Musculares , Humanos , Doenças Musculares/genética , Distrofias Musculares/metabolismo , Mutação , Matriz Extracelular/metabolismo , Fenótipo , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo
20.
Genes (Basel) ; 14(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36980840

RESUMO

The GNE-associated V727M mutation is one of the most prevalent ethnic founder mutations in the Asian HIBM cohort; however, its role in inducing disease phenotype remains largely elusive. In this study, the function of this hotspot mutation was profoundly investigated. For this, V727M mutation-specific altered expression profile and potential networks were explored. The relevant muscular disorder-specific in vivo studies and patient data were further analyzed, and the key altered molecular pathways were identified. Our study found that the GNEV727M mutation resulted in a deregulated lincRNA profile, the majority of which (91%) were associated with a down-regulation trend. Further, in silico analysis of associated targets showed their active role in regulating Wnt, TGF-ß, and apoptotic signaling. Interestingly, COL6a3 was found as a key target of these lincRNAs. Further, GSEA analysis showed HIBM patients with variable COL6A3 transcript levels have significant alteration in many critical pathways, including epithelial-mesenchymal-transition, myogenesis, and apoptotic signaling. Interestingly, 12 of the COL6A3 coexpressed genes also showed a similar altered expression profile in HIBM. A similar altered trend in COL6A3 and coexpressed genes were found in in vivo HIBM disease models as well as in multiple other skeletal disorders. Thus, the COL6A3-specific 13 gene signature seems to be altered in multiple muscular disorders. Such deregulation could play a pivotal role in regulating many critical processes such as extracellular matrix organization, cell adhesion, and skeletal muscle development. Thus, investigating this novel COL6A3-specific 13 gene signature provides valuable information for understanding the molecular cause of HIBM and may also pave the way for better diagnosis and effective therapeutic strategies for many muscular disorders.


Assuntos
Colágeno Tipo VI , Doenças Musculares , Humanos , Apoptose , Colágeno Tipo VI/genética , Doenças Musculares/genética , Mutação , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...